Exercise 26

The number of yeast cells in a laboratory culture increases rapidly initially but levels off eventually. The population is modeled by the function

$$n = f(t) = \frac{a}{1 + be^{-0.7t}}$$

where t is measured in hours. At time t = 0 the population is 20 cells and is increasing at a rate of 12 cells/hour. Find the values of a and b. According to this model, what happens to the yeast population in the long run?

Solution

Take the derivative of n(t) to get the rate of population growth per hour.

$$\begin{aligned} \frac{dn}{dt} &= \frac{d}{dt} \left(\frac{a}{1 + be^{-0.7t}} \right) \\ &= \frac{\left[\frac{d}{dt}(a) \right] (1 + be^{-0.7t}) - \left[\frac{d}{dt} (1 + be^{-0.7t}) \right] (a)}{(1 + be^{-0.7t})^2} \\ &= \frac{(0)(1 + be^{-0.7t}) - \left[(be^{-0.7t}) \cdot \frac{d}{dt} (-0.7t) \right] (a)}{(1 + be^{-0.7t})^2} \\ &= \frac{-(be^{-0.7t}) \cdot (-0.7)(a)}{(1 + be^{-0.7t})^2} \\ &= \frac{0.7abe^{-0.7t}}{(1 + be^{-0.7t})^2} \end{aligned}$$

Use the given information to construct a system of two equations for the two unknowns, a and b.

$$\begin{cases} n(t=0) = \frac{a}{1+be^{-0.7(0)}} = 20\\\\ \frac{dn}{dt}(t=0) = \frac{0.7abe^{-0.7(0)}}{(1+be^{-0.7(0)})^2} = 12\\\\ \frac{a}{1+b} = 20\\\\ \frac{0.7ab}{(1+b)^2} = 12 \end{cases}$$

Solve the first equation for 1/(1+b) and b,

$$\frac{a}{1+b} = 20 \quad \to \quad \frac{1}{1+b} = \frac{20}{a} \quad \to \quad 1+b = \frac{a}{20} \quad \to \quad b = \frac{a}{20} - 1, \tag{1}$$

www.stemjock.com

and substitute the formulas into the second equation.

$$\frac{0.7ab}{(1+b)^2} = 12$$
$$0.7ab\left(\frac{1}{1+b}\right)^2 = 12$$
$$0.7a\left(\frac{a}{20} - 1\right)\left(\frac{20}{a}\right)^2 = 12$$
$$0.7a\left(\frac{20}{a} - \frac{20^2}{a^2}\right) = 12$$
$$14\left(1 - \frac{20}{a}\right) = 12$$

Solve for a.

$$1 - \frac{20}{a} = \frac{6}{7}$$
$$-\frac{20}{a} = -\frac{1}{7}$$
$$\frac{20}{a} = \frac{1}{7}$$
$$\frac{a}{20} = 7$$
$$a = 140$$

Substitute this back into equation (1) to determine b.

$$b = \frac{a}{20} - 1 = \frac{140}{20} - 1 = 7 - 1 = 6$$

As a result, the population function is

$$n(t) = \frac{140}{1 + 6e^{-0.7t}}$$

Take the limit as $t \to \infty$ to find what happens to the yeast population in the long run.

$$\lim_{t \to \infty} n(t) = \lim_{t \to \infty} \frac{140}{1 + 6e^{-0.7t}} = \frac{140}{1 + 6(0)} = 140$$

This indicates that the yeast population tends towards 140 cells over a very long time.

www.stemjock.com